Optimal Eta Pairing on Supersingular Genus-2 Binary Hyperelliptic Curves
نویسندگان
چکیده
This article presents a novel optimal pairing over supersingular genus-2 binary hyperelliptic curves. Starting from Vercauteren’s work on optimal pairings, we describe how to exploit the action of the 2-th power Verschiebung in order to further reduce the loop length of Miller’s algorithm compared to the genus-2 ηT approach. As a proof of concept, we detail an optimized software implementation and an FPGA accelerator for computing the proposed optimal Eta pairing on a genus-2 hyperelliptic curve over F2367 , which satisfies the recommended security level of 128 bits.
منابع مشابه
Efficient Pairing Computation on Genus 2 Curves in Projective Coordinates
In recent years there has been much interest in the development and the fast computation of bilinear pairings due to their practical and myriad applications in cryptography. Well known efficient examples are the Weil and Tate pairings and their variants such as the Eta and Ate pairings on the Jacobians of (hyper-)elliptic curves. In this paper, we consider the use of projective coordinates for ...
متن کاملEfficient pairing computation on supersingular Abelian varieties
We present a general technique for the efficient computation of pairings on supersingular Abelian varieties. This formulation, which we call the eta pairing, generalises results of Duursma and Lee for computing the Tate pairing on supersingular elliptic curves in characteristic three. We then show how our general technique leads to a new algorithm which is about twice as fast as the Duursma-Lee...
متن کاملSpeeding Up Pairing Computations on Genus 2 Hyperelliptic Curves with Efficiently Computable Automorphisms
Pairings on the Jacobians of (hyper-)elliptic curves have received considerable attention not only as a tool to attack curve based cryptosystems but also as a building block for constructing cryptographic schemes with new and novel properties. Motivated by the work of Scott, we investigate how to use efficiently computable automorphisms to speed up pairing computations on two families of non-su...
متن کاملTate Pairing Computation on the Divisors of Hyperelliptic Curves of Genus 2
We present an explicit Eta pairing approach for computing the Tate pairing on general divisors of hyperelliptic curves Hd of genus 2, where Hd : y 2 + y = x5 + x3 + d is defined over F2n with d = 0 or 1. We use the resultant for computing the Eta pairing on general divisors. Our method is very general in the sense that it can be used for general divisors, not only for degenerate divisors. In th...
متن کاملEta Pairing Computation on General Divisors over Hyperelliptic Curves y2 = x7-x+/-1
Recent developments on the Tate or Eta pairing computation over hyperelliptic curves by Duursma–Lee and Barreto et al. have focused on degenerate divisors. We present efficient methods that work for general divisors to compute the Eta paring over divisor class groups of the hyperelliptic curves Hd : y2 = x p−x+d where p is an odd prime. On the curve Hd of genus 3, we provide two efficient metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010